If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-2400=0
a = 1; b = 1; c = -2400;
Δ = b2-4ac
Δ = 12-4·1·(-2400)
Δ = 9601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{9601}}{2*1}=\frac{-1-\sqrt{9601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{9601}}{2*1}=\frac{-1+\sqrt{9601}}{2} $
| 1/6+t=11/30 | | 2(4x+2)+3=8x+7 | | 5n+34=-2(-1-1 | | 2/7(x+9)=-4 | | 11/30+t=11/30 | | (2x+3)=-x+2 | | x(2x-13)=-6 | | 2(3x-1+2(4x+5)=8 | | Y=1/3(2x+1) | | 2(2y-3)=15+y | | 5.2=a−0.4 | | 3x−1=1−3x | | 4x+3x+x=3600 | | 3x2+x-1/2=0 | | (2x-5)=24 | | 2*11+(3*x)=11*2+(3*x) | | -10=x/6-8 | | (14x−18)+(5x+8)=180 | | Y=10x+1-3 | | x+17=5x-27 | | x2+x/3=84 | | 4x+3(2-×)=8-2× | | 40x+1,480-37=38(40x+61) | | 10x=-6£ | | 12x-28=25 | | 5(2x-2=45+5 | | 4x−9=3.5x−9 | | 1/2x+3=2x-9 | | 5xx=2.61 | | 7x^2+35×=0 | | X2-8x=-12 | | 3/6=9/10k |